Обогреватель индукционного типа — это необходимо знать

Невиданная экономия, суперэффективность, неимоверный срок службы и даже новый принцип передачи энергии. Именно так характеризуют продавцы индукционных котлов свой товар. Пора и нам приобщиться к высоким технологиям будущего и узнать, на самом ли деле оно так прекрасно, это индукционное отопление.


Блок: 1/4 | Кол-во символов: 298
Источник: http://teploguru.ru/sistemy/indukcionnoe-otoplenie.html

История индукционного нагрева

Открытие электромагнитной индукции в 1831 году принадлежит Майклу Фарадею. При движении проводника в поле магнита в нём наводится ЭДС, так же как при движении магнита, силовые линии которого пересекают проводящий контур. Ток в контуре называется индукционным. На законе электромагнитной индукции основаны изобретения множества устройств, в том числе определяющих — генераторов и трансформаторов, вырабатывающих и распределяющих электрическую энергию, что является фундаментальной основой всей электротехнической промышленности.

В 1841 году Джеймс Джоуль (и независимо от него Эмиль Ленц) сформулировал количественную оценку теплового действия электрического тока: «Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину напряженности электрического поля» (закон Джоуля — Ленца). Тепловое действие индуцированного тока породило поиски устройств бесконтактного нагрева металлов. Первые опыты по нагреву стали с использованием индукционного тока были сделаны Е. Колби в США.

Первая успешно работающая т. н. канальная индукционная печь для плавки стали была построена в 1900 году на фирме «Benedicks Bultfabrik» в городе Gysing в Швеции. В респектабельном журнале того времени «THE ENGINEER» 8 июля 1904 г. появилась знаменитая публикация, где шведский изобретатель инженер F. A. Kjellin рассказывает о своей разработке. Печь питалась от однофазного трансформатора. Плавка осуществлялась в тигле в виде кольца, металл, находящийся в нём, представлял вторичную обмотку трансформатора, питающегося током 50-60 Гц.

Первая печь мощностью 78 кВт была запущена в эксплуатацию 18 марта 1900 года и оказалась весьма неэкономичной, поскольку производительность плавки составляла всего 270 кг стали в сутки. Следующая печь была изготовлена в ноябре того же года мощностью 58 кВт и ёмкостью 100 кг по стали. Печь показала высокую экономичность, производительность плавки составила от 600 до 700 кг стали в сутки. Однако износ футеровки от тепловых колебаний оказался на недопустимом уровне, частые замены футеровки снижали итоговую экономичность.

Изобретатель пришёл к выводу, что для максимальной производительности плавки необходимо при сливе оставлять значительную часть расплава, что позволяет избежать многих проблем, в том числе износа футеровки. Такой способ выплавки стали с остатком, который стали называть «болото», сохранился до сих пор в некоторых производствах, где применяются печи большой ёмкости.

В мае 1902 года была введена в эксплуатацию значительно усовершенствованная печь ёмкостью 1800 кг, слив составлял 1000—1100 кг, остаток 700—800 кг, мощность 165 кВт, производительность плавки стали могла доходить до 4100 кг в сутки! Такой результат по потреблению энергии 970 кВт⋅ч/т впечатляет своей экономичностью, которая мало уступает современной производительности порядка 650 кВт⋅ч/т. По расчётам изобретателя из потребляемой мощности 165 кВт в потери уходило 87,5 кВт, полезная тепловая мощность составила 77,5 кВт, получен весьма высокий полный КПД, равный 47 %. Экономичность объясняется кольцевой конструкцией тигля, что позволило сделать многовитковый индуктор с малым током и высоким напряжением — 3000 В. Современные печи с цилиндрическим тиглем значительно компактнее, требуют меньших капитальных вложений, проще в эксплуатации, оснащены многими усовершенствованиями за сотню лет своего развития, однако КПД повышен несущественно. Правда, изобретатель в своей публикации игнорировал тот факт, что плата за электроэнергию осуществляется не за активную мощность, а за полную, которая при частоте 50-60 Гц примерно вдвое выше активной мощности. А в современных печах реактивная мощность компенсируется конденсаторной батареей.

Своим изобретением инженер F. A. Kjellin положил начало развития промышленных канальных печей для плавки цветных металлов и стали в индустриальных странах Европы и в Америке. Переход от канальных печей 50-60 Гц к современным высокочастотным тигельным длился с 1900 по 1940 г.

Блок: 2/13 | Кол-во символов: 4046
Источник: https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%BD%D0%B0%D0%B3%D1%80%D0%B5%D0%B2

О принципе индуктивного нагрева


Для начала разъясним, как функционируют электрические индукционные нагреватели. Переменный ток, проходя по виткам катушки, образует вокруг нее электромагнитное поле. Если поместить внутрь обмотки сердечник из магнитящегося металла, то он станет нагреваться вихревыми токами, возникающими под воздействием поля. Вот и весь принцип.

Важное условие. Чтобы металлический сердечник нагревался, катушка должна питаться переменным током, меняющим знак и вектор поля с высокой частотой. При подаче на обмотку постоянного тока вы получите обыкновенный электромагнит.

Сам нагревательный элемент носит название индуктора и является главной частью установки. В отопительных котлах он представляет собой стальную трубу с протекающим внутри теплоносителем, а в кухонных плитах – плоскую катушку, максимально приближенную к варочной панели, как изображено далее на фото.

Катушка-индуктор нагревает железную трубу, которая передает тепло протекающей воде

Вторая часть индукционного нагревателя — схема, повышающая частоту тока. Дело в том, что напряжение с промышленной частотой 50 Гц малопригодно для работы подобных устройств. Если присоединить индуктор к сети напрямую, то он начнет сильно гудеть и слабо прогревать сердечник, причем вместе с обмотками. Чтобы эффективно преобразовывать электричество в теплоту и полностью передавать ее металлу, частоту нужно повысить минимум до 10 кГц, чем и занимается электросхема.

В чем заключаются реальные преимущества индукционных котлов перед ТЭНовыми и электродными:

  1. Деталь, нагревающая воду, — это простой кусок трубы, не участвующий в электрохимических процессах (как в электродных теплогенераторах). Поэтому срок службы индуктора ограничивается только работоспособностью катушки и может достигать 10—20 лет.
  2. По той же причине элемент одинаково хорошо «дружит» со всеми видами теплоносителей – водой, антифризом и даже машинным маслом, разницы нет.
  3. Внутренности индуктора не покрываются накипью в процессе эксплуатации.

Здесь сердечником служит посуда из магнитного металла

Примечание. С индукционными котлами связано множество мифов. Например, продавцы утверждают, что они экономичнее других электрических обогревателей на 10—20%, хотя в действительности КПД всех электрокотлов равен 98%. Список преимуществ ограничивается тремя вышеперечисленными пунктами, остальное – .

Блок: 2/4 | Кол-во символов: 2336
Источник: https://otivent.com/indukcionnyj-nagrevatel-svoimi-rukami

Принцип действия

Индукционный нагрев — это нагревание материалов электрическими токами, которые индуцируются переменным магнитным полем. Следовательно — это нагрев изделий из проводящих материалов (проводников) магнитным полем индукторов (источников переменного магнитного поля).

Индукционный нагрев проводится следующим образом. Электропроводящая (металлическая, графитовая) заготовка помещается в так называемый индуктор, представляющий собой один или несколько витков провода (чаще всего медного). В индукторе с помощью специального генератора наводятся мощные токи различной частоты (от десятка Гц до нескольких МГц), в результате чего вокруг индуктора возникает электромагнитное поле. Электромагнитное поле наводит в заготовке вихревые токи. Вихревые токи разогревают заготовку под действием джоулева тепла.

Система «индуктор-заготовка» представляет собой бессердечниковый трансформатор, в котором индуктор является первичной обмоткой. Заготовка является как бы вторичной обмоткой, замкнутой накоротко. Магнитный поток между обмотками замыкается по воздуху.

На высокой частоте вихревые токи вытесняются образованным ими же магнитным полем в тонкие поверхностные слои заготовки Δ (скин-эффект), в результате чего их плотность резко возрастает и заготовка разогревается. Нижерасположенные слои металла прогреваются за счёт теплопроводности. Важен не ток, а большая плотность тока. В скин-слое Δ плотность тока увеличивается в e раз относительно плотности тока в заготовке, при этом в скин-слое выделяется 86,4 % тепла от общего тепловыделения. Глубина скин-слоя зависит от частоты излучения: чем выше частота, тем тоньше скин-слой. Также она зависит от относительной магнитной проницаемости μ материала заготовки.

Для железа, кобальта, никеля и магнитных сплавов при температуре ниже точки Кюри μ имеет величину от нескольких сотен до десятков тысяч. Для остальных материалов (расплавы, цветные металлы, жидкие легкоплавкие эвтектики, графит, электропроводящая керамика и т. д.) μ примерно равна единице.

Формула для вычисления глубины скин-слоя в мм:

,

где ρ — удельное электрическое сопротивление материала заготовки при температуре обработки, Ом·м, f — частота электромагнитного поля, генерируемого индуктором, Гц.

Например, при частоте 2 МГц глубина скин-слоя для меди около 0,047 мм, для железа ≈ 0,0001 мм.

Индуктор сильно нагревается во время работы, так как сам поглощает собственное излучение. К тому же он поглощает тепловое излучение от раскалённой заготовки. Делают индукторы из медных трубок, охлаждаемых водой. Вода подаётся отсасыванием — этим обеспечивается безопасность в случае прожога или иной разгерметизации индуктора.

Блок: 3/13 | Кол-во символов: 2644
Источник: https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%BD%D0%B0%D0%B3%D1%80%D0%B5%D0%B2

Покупать или нет


Так всё же, имеет ли смысл приобретать индукционный котёл для отопления? Увы, мы не можем дать однозначного ответа на этот вопрос. Рассказы о его сверхэкономичности оказались мифом, надёжность может быть высокой. А может и не быть. Бесшумность, о которой говорят, присуща всем электронагревателям, звук может издавать насос. Компактность весьма спорна.

На первый взгляд, индукционный котёл (справа) намного компактнее ТЭНового котла (слева). Однако в корпусе последнего размещена куча всякого необходимого оборудования, которое понадобится для индукционного тоже. И не факт, что расположенное вразнобой, оно не займёт на стене больше места

В остальном преимуществ у индукционного котла перед обычными мы не видим. Но есть недостаток: он дороже стоит. Или, если быть точнее, больше просят денег. Причём хороший ТЭНовый котёл за свои деньги представляет собой сбалансированное, полностью готовое к установке и эксплуатации устройство. А индукционный нагреватель ещё нужно комплектовать дополнительным оборудованием.  На наш взгляд, маркетологи и продавцы, представляя нам ординарный товар в качестве эксклюзива, пытаются «снять стружку». Получить прибыль большую, чем на других изделиях. Хотя, тенденция к снижению цен уже наметилась и можно ожидать, что в течение нескольких ближайших лет на индукционные котлы установятся справедливые цены. Либо их просто перестанут выпускать.

Если вы рассматриваете возможность приобретения индукционного водонагревателя для отопления собственного дома, рекомендуем пообщаться с профессиональными теплотехниками, как проектировщиками, так и практиками. Опытные специалисты отслеживают тенденции, имеют возможность давать оценки по новым видам техники на основе собственного из практического опыта. Поставщиков оборудования тоже стоит послушать, но сказанное ими следует воспринимать критически.

Блок: 3/4 | Кол-во символов: 1847
Источник: http://teploguru.ru/sistemy/indukcionnoe-otoplenie.html

Варианты самодельных устройств

На просторах интернета размещено достаточное количество разнообразных конструкций, создаваемых для различных целей. Взять индукционный малогабаритный нагреватель, сделанный из компьютерного блока питания 250—500 Вт. Модель, показанная на фото, пригодится мастеру в гараже или автосервисе для плавки стержней из алюминия, меди и латуни.

Но для отопления помещений конструкция не подойдет по причине малой мощности. В интернете есть два реальных варианта, чьи испытания и работа засняты на видео:

  • водонагреватель из полипропиленовой трубы с питанием от сварочного инвертора либо индукционной кухонной панели;
  • стальной котел с нагревом от той же варочной панели.

Справка. Существуют и другие, полностью самодельные конструкции, где преобразователи частоты умельцы собирают с нуля. Но для этого нужны знания и навыки в области радиотехники, поэтому рассматривать их мы не будем, а просто приведем пример такой схемы.

Теперь давайте подробнее разберем, как делаются индукционные нагреватели своими руками, а главное, — как они потом функционируют.

Изготавливаем нагревательный элемент из трубы

Если вы плотно занимались поиском информации по данной теме, то наверняка столкнулись с этой конструкцией, поскольку мастер выложил ее сборку на популярном видеоресурсе YouTube. После чего многие сайты разместили текстовые версии изготовления этого индуктора в виде пошаговых инструкций. Вкратце нагреватель делается так:

  1. Внутрь трубы из полипропилена диаметром 40 мм и длиной 50 см наталкиваются металлические ершики для мытья посуды (можно рубленую проволоку — катанку). Они должны притягиваться магнитом.
  2. К трубе припаиваются отводы с резьбами для подключения к отопительной сети.
  3. Снаружи вдоль корпуса приклеиваются 4—5 стержней из текстолита. На них наматывается провод сечением 1.7—2 мм² со стеклоизоляцией, применяющийся в сварочных трансформаторах.
  4. Варочная панель разбирается и «родной» индуктор плоской формы демонтируется. Вместо него подключается самодельный нагреватель из трубы.

Важный нюанс. Длину и сечение провода для намотки катушки следует определять по штатному индуктору печки, чтобы она соответствовала мощности полевых транзисторов в электросхеме. Если взять больше провода, то упадет мощность нагрева, меньше – перегреются и выйдут из строя транзисторы. Как это выглядит визуально, смотрите на видео:

Как нетрудно догадаться, роль нагревательного элемента здесь играют металлические ершики, находящиеся в переменном магнитном поле катушки. Если запустить варочную панель на максимум, одновременно пропуская через импровизированный котел проточную воду, то ее удастся нагреть на 15—20 °С, что и показали испытания агрегата.

Поскольку мощность большинства индукционных плит лежит в пределах 2—2.5 кВт, то с помощью теплогенератора можно обогреть помещения общей площадью не более 25 м². Есть способ увеличить нагрев, подключив индуктор к сварочному аппарату, но здесь есть свои сложности:

  1. Инвертор выдает постоянный ток, а нужен переменный. Для подсоединения индукционного нагревателя аппарат придется разобрать и найти на схеме точки, где напряжение еще не выпрямлено.
  2. Нужно взять провод большего сечения и подобрать число витков путем расчета. Как вариант, медную проволоку Ø1.5 мм в эмалевой изоляции.
  3. Понадобится организовать охлаждение элемента.

Проверку работоспособности индуктивного водонагревателя автор демонстрирует в своем видео, представленном ниже. Испытания показали, что агрегат требует доработки, но конечный результат, к сожалению, неизвестен. Похоже, что умелец оставил проект незавершенным.

Как собрать индукционный котел

В этом случае дешевую китайскую плиту разбирать не нужно. Суть в том, чтобы сварить по ее размерам котловой бак, руководствуясь пошаговой инструкцией:

  1. Возьмите стальную профильную трубу 20 х 40 мм с толщиной стенки 2 мм и нарежьте из нее заготовок по ширине панели.
  2. Сварите трубки между собой по длине, стыкуя меньшими сторонами.
  3. Сверху и снизу к торцам герметично приварите железные крышки. Сделайте в них отверстия и поставьте патрубки с резьбами.
  4. К одной из сторон прикрепите сваркой 2 уголка, чтобы они образовали полку для индукционной печки.
  5. Покрасьте агрегат термостойкой эмалью из баллончика. Подробнее процесс сборки показан в видеоролике.

Окончательная сборка и запуск заключается в монтаже котла на стену и его врезке в систему отопления. Варочная панель вставляется в гнездо из уголков на задней стенке бака и подключается к электросети. Остается заполнить систему теплоносителем, стравить воздух и включить нагрев индуктора.

Здесь вас подстерегает та же проблема, что встречалась с предыдущей моделью. Несомненно, индукционный нагрев будет работать, но его мощности 2.5 кВт хватит для обогрева парочки небольших комнат при морозе на улице. Осенью и весной, когда температура не опустилась ниже нуля, самодельный котел сможет отопить площадь 35—40 м². Как его правильно подключить к системе, смотрите в очередном видеосюжете:

Блок: 3/4 | Кол-во символов: 4928
Источник: https://otivent.com/indukcionnyj-nagrevatel-svoimi-rukami

Применение


Отопление, основанное на вихревых токах, созданных электромагнитными полями может найти своё применение при:

  • обогреве жилого хозяйства, дома,  бани, гаража, промышленного или административного здания;
  • в системе горячего водоснабжения;
  • обогреве сооружений и конструкций, имеющих определённые требования к источникам тепла (по безопасности).
Блок: 4/7 | Кол-во символов: 346
Источник: http://Tehnika.expert/klimaticheskaya/obogrevatel/indukcionnyj.html

Видео: индукционный котел

Блок: 4/4 | Кол-во символов: 26
Источник: http://teploguru.ru/sistemy/indukcionnoe-otoplenie.html

Преимущества


  • Высокоскоростной разогрев или плавление любого электропроводящего материала.
  • Возможен нагрев в атмосфере защитного газа, в окислительной (или восстановительной) среде, в жидкости, в вакууме.
  • Нагрев через стенки защитной камеры, изготовленной из стекла, цемента, пластмасс, дерева — эти материалы очень слабо поглощают электромагнитное излучение и остаются холодными при работе установки. Нагревается только электропроводящий материал — металл (в том числе расплавленный), углерод, проводящая керамика, жидкие металлы и т. п. Например, внутренности радиолампы можно прогревать для обезгаживания прямо через стеклянную колбу. Электролиты (растворы солей) невозможно нагревать индукционным нагревом, так как ионы, в отличие от электронов, обладают большой массой и малой подвижностью.
  • За счёт возникающих МГД-усилий происходит интенсивное перемешивание жидкого металла, вплоть до удержания его в подвешенном состоянии в воздухе или защитном газе — так получают сверхчистые сплавы в небольших количествах (левитационная плавка, плавка в электромагнитном тигеле).
  • Поскольку разогрев ведётся посредством электромагнитного излучения, отсутствует загрязнение заготовки продуктами горения факела в случае газопламенного нагрева или материалом электрода в случае дугового нагрева. Помещение образцов в атмосферу инертного газа и высокая скорость нагрева позволят ликвидировать окалинообразование.
  • Нет загрязнения воздуха, так как отсутствуют продукты горения. Небольшие установки индукционного нагрева можно эксплуатировать в замкнутом и плохо проветриваемом помещении, не оборудованном специальными средствами вентиляции и вытяжками (гаражи, небольшие домашние мастерские, подвалы).
  • Удобство эксплуатации за счёт небольшого размера индуктора.
  • Индуктор можно изготовить особой формы — это позволит равномерно прогревать по всей поверхности детали сложной конфигурации, не приводя к их короблению или локальному непрогреву.
  • Легко провести местный и избирательный нагрев.
  • Так как наиболее интенсивно разогрев идет в тонких верхних слоях заготовки, а нижележащие слои прогреваются более медленно за счёт теплопроводности, метод является идеальным для проведения поверхностной закалки деталей (сердцевина детали при этом остаётся вязкой).
  • Лёгкая автоматизация оборудования и конвейерных производственных линий. Простота управления циклами нагрева и охлаждения. Простая регулировка и удерживание температуры, стабилизация мощности, подача и съём заготовок.
Блок: 5/13 | Кол-во символов: 2454
Источник: https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%BD%D0%B0%D0%B3%D1%80%D0%B5%D0%B2

Индукционный обогреватель своими руками

Из-за дороговизны прибора многие решают изготовить подобный нагреватель самостоятельно. В интернете можно встретить много статей, в которых описывается, как сделать индукционный котел – обогреватель своими руками. Мы опишем принцип изготовления простейшего типа устройства, чтобы с подобной задачей мог справиться любой хозяин.

Перед тем как приступить к работе, подготовьте следующие инструменты: кусачки, паяльник (если вы планируете делать сердечник из металлической трубы), отвертки.

  1. Нарежьте проволоку из нержавеющей стали диаметром 7 мм на кусочки приблизительно в 5 мм.
  2. Подготовьте пластиковую или металлическую трубу (сердечник), стенки которой должны быть толщиной не менее 3-5 мм, чтобы она смогла выдерживать высокие температуры.
  3. Заполните трубу доверху обрезками из проволоки.
  4. Концы трубы закройте сеткой, чтобы исключить вероятность выпадения из неё обрезков во время работы прибора.
  5. Далее по всей длине трубы спиралью намотайте медную проволоку, сделав порядка 90 витков.
  6. Изготовьте котёл, вырезав прямоугольный участок трубы.
  7. В отверстие котла вставьте изготовленное устройство.
  8. Концы медной проволоки подключите к инвертору с высокой частотой действия. Купить его можно практически во всех магазинах, имеющих строительное направление.

Перед сборкой оборудования оцените свои силы и возможности. Не беритесь за изготовление нагревательного прибора, если ничего не понимаете в электричестве.

Блок: 5/7 | Кол-во символов: 1434
Источник: http://Tehnika.expert/klimaticheskaya/obogrevatel/indukcionnyj.html

Индукционный обогреватель воды для системы отопления


Обогреватель имеет весьма неприхотливую конструкцию. Он высокоэффективен и надёжен. Используя его при изготовлении котла в системе отопления, можно пренебречь установкой насоса, поскольку вода будет течь по трубам в результате конвекции.

Такое устройство следует снабдить патрубками: для холодной и горячей воды. Сверху через патрубок горячая вода будет подаваться в систему отопления. А снизу на вводной части через него будет пребывать холодная вода

Блок: 6/7 | Кол-во символов: 502
Источник: http://Tehnika.expert/klimaticheskaya/obogrevatel/indukcionnyj.html

Левитационная плавка (плавка во взвешенном состоянии, плавка в электромагнитном тигле)

Переменный ток в индукторе порождает ток противоположного направления в заготовке. Область заготовки вблизи индуктора можно рассматривать как «виток» проводника с током. Токи, протекающие в противоположных направлениях, отталкиваются по закону Ампера. Таким образом, заготовка отталкивается от индуктора (электромагнитное дутьё).

Для подвешивания электропроводящей заготовки применяют индукторы специальных конструкций, обычно выполненных в виде конуса с противовитком. Электромагнитное поле в подобном индукторе сильнее снизу и по бокам, образуя потенциальную яму, удерживающую заготовку от движения вниз и вбок.

Одновременно с левитацией осуществляется интенсивный разогрев заготовки, что позволяет осуществлять плавку без контакта с тиглем и без загрязнения пробы материалом тигля. Данный метод применяется, например, для получения сверхчистых образцов сплавов.

Блок: 7/13 | Кол-во символов: 954
Источник: https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%BD%D0%B0%D0%B3%D1%80%D0%B5%D0%B2

Проблема индукционного нагрева заготовок из магнитных материалов


Если инвертор для индукционного нагрева не является автогенератором, не имеет схемы автоподстройки частоты (ФАПЧ) и работает от внешнего задающего генератора (на частоте, близкой к резонансной частоте колебательного контура «индуктор — компенсирующая батарея конденсаторов»). В момент внесения заготовки из магнитного материала в индуктор (если размеры заготовки достаточно крупны и соизмеримы с размерами индуктора), индуктивность индуктора резко увеличивается, что приводит к скачкообразному уменьшению собственной резонансной частоты колебательного контура и отклонению её от частоты задающего генератора. Контур выходит из резонанса с задающим генератором, что приводит к увеличению его сопротивления и скачкообразному уменьшению передаваемой в заготовку мощности. Если мощность установки регулируется внешним источником питания, то естественной реакцией оператора является увеличить напряжение питания установки. При разогреве заготовки до точки Кюри, её магнитные свойства исчезают, собственная частота колебательного контура возвращается обратно к частоте задающего генератора. Сопротивление контура резко уменьшается, резко возрастает потребляемый ток. Если оператор не успеет снять повышенное напряжение питания, то установка перегревается и выходит из строя. Если установка оборудована автоматической системой управления, то система управления должна отслеживать переход через точку Кюри и автоматически уменьшать частоту задающего генератора, подстраивая его в резонанс с колебательным контуром (либо уменьшать подаваемую мощность, если изменение частоты недопустимо).

Если производится нагрев немагнитных материалов, то вышесказанное значения не имеет. Внесение в индуктор заготовки из немагнитного материала практически не меняет индуктивность индуктора и не сдвигает резонансную частоту рабочего колебательного контура, и необходимости в системе управления нет.

Если размеры заготовки много меньше размеров индуктора, то она тоже не сильно сдвигает резонанс рабочего контура.

Индукционные плиты

Индукционная плита — кухонная электрическая плита, разогревающая металлическую посуду индуцированными вихревыми токами, создаваемыми высокочастотным магнитным полем, частотой 20-100 кГц.

Такая плита обладает большим КПД по сравнению с ТЭН электроплитками, так как меньше тепла уходит на нагрев корпуса, а кроме того отсутствует период разгона и остывания (когда зря тратится выработанная, но не поглощенная посудой энергия).

Индукционные плавильные печи

Индукционные (бесконтактные) плавильные печи — электрические печи для расплавления и перегрева металлов, в которых нагрев происходит за счет вихревых токов, возникающих в металлическом тигеле (и металле), либо только в металле (если тигель изготовлен не из металла; такой способ нагрева более эффективен, если тигель плохо теплоизолирован).

Применяется в литейных цехах металлургических заводов, а также в цехах точного литья и ремонтных цехах машиностроительных заводов для получения стальных отливок высокого качества. Возможна плавка цветных металлов (бронзы, латуни, алюминия) и их сплавов в графитовом тигле. Индукционная печь работает по принципу трансформатора, у которого первичной обмоткой является водоохлаждаемый индуктор, вторичной и одновременно нагрузкой — находящийся в тигле металл. Нагрев и расплавление металла происходят за счёт протекающих в нём токов, которые возникают под действием электромагнитного поля, создаваемого индуктором.

Блок: 9/13 | Кол-во символов: 3487
Источник: https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%BD%D0%B0%D0%B3%D1%80%D0%B5%D0%B2

Замечания

  • Индуктор по возможности необходимо располагать как можно ближе к заготовке. Это не только увеличивает плотность электромагнитного поля вблизи заготовки (пропорционально квадрату расстояния), но и увеличивает коэффициент мощности .
  • Увеличение частоты резко уменьшает коэффициент мощности (пропорционально кубу частоты).
  • При нагреве магнитных материалов дополнительное тепло также выделяется за счет перемагничивания, их нагрев идёт намного эффективнее (до точки Кюри).
  • При расчёте индуктора необходимо учитывать индуктивность подводящих к индуктору шин, которая может быть намного больше индуктивности самого индуктора (если индуктор выполнен в виде одного витка небольшого диаметра или даже части витка — дуги).
  • Иногда в качестве генератора высокой частоты использовали списанные мощные радиопередатчики, где антенный контур заменяли на нагревательный индуктор.
  • Индукционный нагрев можно проводить в воде, даже солёной. Так как ионы растворённых в воде солей тяжёлые и обладают большой инерционностью, высокочастотное электромагнитное поле не может их «раскачать» и загрязнённая вода не нагревается.
Блок: 10/13 | Кол-во символов: 1109
Источник: https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%BD%D0%B0%D0%B3%D1%80%D0%B5%D0%B2

Литература

  • Бабат Г. И., Свенчанский А. Д. Электрические промышленные печи. — М.: Госэнергоиздат, 1948. — 332 с.
  • Бурак Я. И., Огирко И. В. Оптимальный нагрев цилиндрической оболочки с зависящими от температуры характеристиками материала // Мат. методы и физ.-мех. поля. — 1977. — Вып. 5. — С. 26-30.
  • Васильев А. С. Ламповые генераторы для высокочастотного нагрева. — Л.: Машиностроение, 1990. — 80 с. — (Библиотечка высокочастотника-термиста; Вып. 15). — 5300 экз. — ISBN 5-217-00923-3.
  • Власов В. Ф. Курс радиотехники. — М.: Госэнергоиздат, 1962. — 928 с.
  • Изюмов Н. М., Линде Д. П. Основы радиотехники. — М.: Госэнергоиздат, 1959. — 512 с.
  • Лозинский М. Г. Промышленное применение индукционного нагрева. — М.: Изд-во АН СССР, 1948. — 471 с.
  • Применение токов высокой частоты в электротермии / Под ред. А. Е. Слухоцкого. — Л.: Машиностроение, 1968. — 340 с.
  • Слухоцкий А. Е. Индукторы. — Л.: Машиностроение, 1989. — 69 с. — (Библиотечка высокочастотника-термиста; Вып. 12). — 10 000 экз. — ISBN 5-217-00571-8.
  • Фогель А. А. Индукционный метод удержания жидких металлов во взвешенном состоянии / Под ред. А. Н. Шамова. — 2-е изд., испр. — Л.: Машиностроение, 1989. — 79 с. — (Библиотечка высокочастотника-термиста; Вып. 11). — 2950 экз. — ISBN 5-217-00572-6.
Блок: 13/13 | Кол-во символов: 1251
Источник: https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%BD%D0%B0%D0%B3%D1%80%D0%B5%D0%B2
Кол-во блоков: 22 | Общее кол-во символов: 38406
Количество использованных доноров: 5
Информация по каждому донору:

  1. https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%BD%D0%B0%D0%B3%D1%80%D0%B5%D0%B2: использовано 7 блоков из 13, кол-во символов 15945 (42%)
  2. http://Tehnika.expert/klimaticheskaya/obogrevatel/indukcionnyj.html: использовано 4 блоков из 7, кол-во символов 2980 (8%)
  3. https://StrojDvor.ru/otoplenie/princip-raboty-indukcionnogo-nagrevatelya/: использовано 1 блоков из 6, кол-во символов 2319 (6%)
  4. http://teploguru.ru/sistemy/indukcionnoe-otoplenie.html: использовано 4 блоков из 4, кол-во символов 9898 (26%)
  5. https://otivent.com/indukcionnyj-nagrevatel-svoimi-rukami: использовано 2 блоков из 4, кол-во символов 7264 (19%)


Поделитесь в соц.сетях:

Оцените статью:

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...

Добавить комментарий